WNE Linear Algebra

Resit Exam

28 February 2020

Questions A

Question 1.

Is matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ positive definite for all $a, b, c, d>0$?

Answer 1.

No, for example

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

is not positive definite (it is indefinite). Let

$$
v=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad w=\left[\begin{array}{r}
2 \\
-1
\end{array}\right],
$$

then

$$
v^{\top} A v=1>0, \quad w^{\top} A w=-3<0
$$

Question 2.
If $v=(1,1,0), w=(-1,1,2) \in \mathbb{R}^{3}, V=\operatorname{lin}(v)$, is the image of vector $w \in \mathbb{R}^{3}$ under the (linear) orthogonal symmetry about the subspace $V \subset \mathbb{R}^{3}$ equal to

$$
S_{V}(w)=(1,-1,-2) ?
$$

Answer 2.

Yes, since vector $v \in V$ is an orthogonal basis of V

$$
P_{V}(w)=\frac{w \cdot v}{v \cdot v} v=\frac{0}{2}(1,1,0)=\mathbf{0} .
$$

Moreover

$$
S_{V}(w)=2 P_{V}(w)-w
$$

therefore

$$
S_{V}(w)=-w=(1,-1,-2) .
$$

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ and $A+A^{\top}=\mathbf{0}$, does it follow that $A^{\top} A=A A^{\top}$?

Answer 3.

Yes, if $A^{\top}=-A$ then $A^{\top} A=(-A) A=-A^{2}$ and $A A^{\top}=A(-A)=-A^{2}$.
Alternatively, if $A^{\top}=-A$ then

$$
A=\left[\begin{array}{rr}
0 & a \\
-a & 0
\end{array}\right],
$$

for some $a \in \mathbb{R}$ and

$$
\begin{aligned}
A A^{\top} & =\left[\begin{array}{rr}
0 & a \\
-a & 0
\end{array}\right]\left[\begin{array}{rr}
0 & -a \\
a & 0
\end{array}\right]=\left[\begin{array}{cc}
a^{2} & 0 \\
0 & a^{2}
\end{array}\right], \\
A^{\top} A & =\left[\begin{array}{rr}
0 & -a \\
a & 0
\end{array}\right]\left[\begin{array}{rr}
0 & a \\
-a & 0
\end{array}\right]=\left[\begin{array}{cc}
a^{2} & 0 \\
0 & a^{2}
\end{array}\right] .
\end{aligned}
$$

Question 4.

Is it possible that $A, B \in M(2 \times 2 ; \mathbb{R}), \operatorname{det}\left(A^{2}+2 A B\right) \neq 0$ and $\operatorname{det} A=0$?

Answer 4.

No, because

$$
\operatorname{det}\left(A^{2}+2 A B\right)=\operatorname{det}(A(A+2 B))=\operatorname{det} A \operatorname{det}(A+2 B)
$$

Question 5.

Is it possible that \mathcal{A}, \mathcal{B} are two bases of \mathbb{R}^{2} and

$$
M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] ?
$$

Answer 5.

No, the matrix $M(\mathrm{id}){ }_{\mathcal{A}}^{\mathcal{B}}$ is invertible for any two bases $\mathcal{A}, \mathcal{B}\left(\right.$ since $M(\mathrm{id}){ }_{\mathcal{B}}^{\mathcal{A}} M(\mathrm{id}){ }_{\mathcal{A}}^{\mathcal{B}}=$ $\left.M(\mathrm{id})_{\mathcal{A}}^{\mathcal{A}}=I\right)$. Matrix $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ is not invertible since its determinant is equal to 0 . Alternatively, if $\mathcal{A}=\left(v_{1}, v_{2}\right)$ and $\mathcal{B}=\left(w_{1}, w_{2}\right)$ then the condition

$$
M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

implies $v_{1}=w_{1}+w_{2}, v_{2}=\mathbf{0}$ which is not possible (vectors of a basis are linearly independent).

Question 6.

Are the affine subspaces $E, H \subset \mathbb{R}^{3}$ given by

$$
\begin{aligned}
& E:\left\{\begin{aligned}
x_{1}-x_{2} & =5 \\
2 x_{2}-x_{3} & =6
\end{aligned}\right. \text {, } \\
& H=(-1,0,2)+\operatorname{lin}((1,1,2)),
\end{aligned}
$$

parallel?

Answer 6.

Yes, they are.

$$
\begin{gathered}
\vec{E}:\left\{\begin{array}{rll}
x_{1}-x_{2} & =0 \\
2 x_{2}-x_{3} & =0
\end{array},\right. \\
\vec{E}:\left\{\begin{array}{lll}
x_{1} & = & x_{2} \\
x_{3} & = & 2 x_{2}
\end{array}, \quad x_{2} \in \mathbb{R}\right.
\end{gathered}
$$

therefore

$$
\begin{gathered}
\vec{E}=\left\{\left(x_{2}, x_{2}, 2 x_{2}\right) \in \mathbb{R}^{3} \mid x_{2} \in \mathbb{R}\right\}= \\
=\left\{x_{2}(1,1,2) \in \mathbb{R}^{3} \mid x_{2} \in \mathbb{R}\right\}=\operatorname{lin}((1,1,2))=\vec{H},
\end{gathered}
$$

which, by definition (see Lecture 11) means that E and H are parallel.

Questions B

Question 1.

Is matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ negative definite for all $a, b, c, d<0$?

Answer 1.

No, for example

$$
A=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right]
$$

is not negative definite (it is indefinite). Let

$$
v=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad w=\left[\begin{array}{r}
2 \\
-1
\end{array}\right],
$$

then

$$
v^{\top} A v=-1<0, \quad w^{\top} A w=3>0
$$

Question 2.
If $v=(1,0,1), w=(1,2,3) \in \mathbb{R}^{3}, V=\operatorname{lin}(v)$, is the image of vector $w \in \mathbb{R}^{3}$ under the (linear) orthogonal projection on the subspace $V^{\perp} \subset \mathbb{R}^{3}$ equal to

$$
P_{V^{\perp}}(w)=(-1,2,1) ?
$$

Answer 2.

Yes, since vector $v \in V$ is an orthogonal basis of V

$$
P_{V}(w)=\frac{w \cdot v}{v \cdot v} v=\frac{4}{2}(1,0,1)=(2,0,2) .
$$

Moreover

$$
w=P_{V}(w)+P_{V^{\perp}}(w),
$$

therefore

$$
P_{V^{\perp}}(w)=w-P_{V}(w)=(1,2,3)-(2,0,2)=(-1,2,1) .
$$

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ and $A-A^{\top}=\mathbf{0}$, does it follow that $A^{\top} A=A A^{\top}$?

Answer 3.

Yes, if $A=A^{\top}$ then $A^{\top} A=A A^{\top}=A^{2}$.

Question 4.

Is it possible that $A, B \in M(2 \times 2 ; \mathbb{R})$, $\operatorname{det} B=0$ and $\operatorname{det}\left(2 A B+B^{2}\right) \neq 0$?

Answer 4.

No, because

$$
\operatorname{det}\left(2 A B+B^{2}\right)=\operatorname{det}((2 A+B) B)=\operatorname{det}(2 A+B) \operatorname{det} B
$$

Question 5.
Is it possible that \mathcal{A}, \mathcal{B} are two different bases of \mathbb{R}^{2} and

$$
M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ?
$$

Answer 5.

No, if $\mathcal{A}=\left(v_{1}, v_{2}\right)$ and $\mathcal{B}=\left(w_{1}, w_{2}\right)$ then the condition

$$
M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

implies $v_{1}=w_{1}, v_{2}=w_{2}$ therefore $\mathcal{A}=\mathcal{B}$.
Question 6.
Are the affine subspaces $E, H \subset \mathbb{R}^{3}$ given by

$$
\begin{gathered}
E=(1,1,2)+\operatorname{aff}((-1,0,1),(1,1,2),(3,2,3)), \\
H=(1,-1,0)+\operatorname{lin}((2,1,1)),
\end{gathered}
$$

parallel?

Answer 6.

Yes, they are.

$$
\begin{aligned}
\vec{E}= & \operatorname{lin}((1,1,2)-(-1,0,1),(3,2,3)-(-1,0,1))= \\
& =\operatorname{lin}((2,1,1),(4,2,2))=\operatorname{lin}((2,1,1))=\vec{H}
\end{aligned}
$$

which, by definition (see Lecture 11) means that E and H are parallel.

