28 February 2020

Questions A

Question 1.
Is matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 positive definite for all $a, b, c, d > 0$?

Answer 1.

No, for example

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

is not positive definite (it is indefinite). Let

$$v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad w = \begin{bmatrix} 2 \\ -1 \end{bmatrix},$$

 then

$$v^{\mathsf{T}}Av = 1 > 0, \quad w^{\mathsf{T}}Aw = -3 < 0.$$

Question 2.

If $v = (1, 1, 0), w = (-1, 1, 2) \in \mathbb{R}^3$, $V = \ln(v)$, is the image of vector $w \in \mathbb{R}^3$ under the (linear) orthogonal symmetry about the subspace $V \subset \mathbb{R}^3$ equal to

$$S_V(w) = (1, -1, -2)?$$

Answer 2.

Yes, since vector $v \in V$ is an orthogonal basis of V

$$P_V(w) = \frac{w \cdot v}{v \cdot v}v = \frac{0}{2}(1, 1, 0) = \mathbf{0}.$$

Moreover

$$S_V(w) = 2P_V(w) - w,$$

therefore

$$S_V(w) = -w = (1, -1, -2).$$

Question 3.

If $A \in M(2 \times 2; \mathbb{R})$ and $A + A^{\intercal} = \mathbf{0}$, does it follow that $A^{\intercal}A = AA^{\intercal}$?

Answer 3.

Yes, if $A^{\intercal} = -A$ then $A^{\intercal}A = (-A)A = -A^2$ and $AA^{\intercal} = A(-A) = -A^2$. Alternatively, if $A^{\intercal} = -A$ then

$$A = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix},$$

for some $a \in \mathbb{R}$ and

$$AA^{\mathsf{T}} = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} \begin{bmatrix} 0 & -a \\ a & 0 \end{bmatrix} = \begin{bmatrix} a^2 & 0 \\ 0 & a^2 \end{bmatrix},$$
$$A^{\mathsf{T}}A = \begin{bmatrix} 0 & -a \\ a & 0 \end{bmatrix} \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} = \begin{bmatrix} a^2 & 0 \\ 0 & a^2 \end{bmatrix}.$$

Question 4.

Is it possible that $A, B \in M(2 \times 2; \mathbb{R})$, $\det(A^2 + 2AB) \neq 0$ and $\det A = 0$?

Answer 4.

No, because

$$\det(A^2 + 2AB) = \det(A(A + 2B)) = \det A \det(A + 2B)$$

Question 5.

Is it possible that \mathcal{A}, \mathcal{B} are two bases of \mathbb{R}^2 and

$$M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}} = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix}?$$

Answer 5.

No, the matrix $M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}}$ is invertible for any two bases \mathcal{A}, \mathcal{B} (since $M(\mathrm{id})^{\mathcal{A}}_{\mathcal{B}}M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}} = M(\mathrm{id})^{\mathcal{A}}_{\mathcal{A}} = I$). Matrix $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ is not invertible since its determinant is equal to 0. Alternatively, if $\mathcal{A} = (v_1, v_2)$ and $\mathcal{B} = (w_1, w_2)$ then the condition

$$M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}} = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix}$$

implies $v_1 = w_1 + w_2$, $v_2 = 0$ which is not possible (vectors of a basis are linearly independent).

Question 6.

Are the affine subspaces $E, \ H \subset \mathbb{R}^3$ given by

$$E: \begin{cases} x_1 - x_2 = 5\\ 2x_2 - x_3 = 6 \end{cases},$$
$$H = (-1, 0, 2) + \ln((1, 1, 2)),$$

parallel?

Answer 6.

Yes, they are.

$$\vec{E}: \begin{cases} x_1 - x_2 &= 0\\ 2x_2 - x_3 &= 0 \end{cases}, \vec{E}: \begin{cases} x_1 = x_2\\ x_3 = 2x_2 \end{cases}, x_2 \in \mathbb{R}$$

therefore

$$\vec{E} = \{ (x_2, x_2, 2x_2) \in \mathbb{R}^3 \mid x_2 \in \mathbb{R} \} =$$
$$= \{ x_2(1, 1, 2) \in \mathbb{R}^3 \mid x_2 \in \mathbb{R} \} = \ln((1, 1, 2)) = \vec{H},$$

which, by definition (see Lecture 11) means that E and H are parallel.

Questions B

Question 1. Is matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ negative definite for all a, b, c, d < 0?

Answer 1.

No, for example

$$A = \begin{bmatrix} -1 & -2 \\ -2 & -1 \end{bmatrix}$$

is not negative definite (it is indefinite). Let

$$v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad w = \begin{bmatrix} 2 \\ -1 \end{bmatrix},$$

 then

$$v^{\mathsf{T}}Av = -1 < 0, \quad w^{\mathsf{T}}Aw = 3 > 0.$$

Question 2.

If $v = (1, 0, 1), w = (1, 2, 3) \in \mathbb{R}^3$, $V = \ln(v)$, is the image of vector $w \in \mathbb{R}^3$ under the (linear) orthogonal projection on the subspace $V^{\perp} \subset \mathbb{R}^3$ equal to

$$P_{V^{\perp}}(w) = (-1, 2, 1)?$$

Answer 2.

Yes, since vector $v \in V$ is an orthogonal basis of V

$$P_V(w) = \frac{w \cdot v}{v \cdot v} v = \frac{4}{2}(1,0,1) = (2,0,2).$$

Moreover

$$w = P_V(w) + P_{V^\perp}(w),$$

therefore

$$P_{V^{\perp}}(w) = w - P_V(w) = (1, 2, 3) - (2, 0, 2) = (-1, 2, 1)$$

Question 3.

If $A \in M(2 \times 2; \mathbb{R})$ and $A - A^{\intercal} = \mathbf{0}$, does it follow that $A^{\intercal}A = AA^{\intercal}$?

Answer 3.

Yes, if $A = A^{\intercal}$ then $A^{\intercal}A = AA^{\intercal} = A^2$.

Question 4.

Is it possible that $A, B \in M(2 \times 2; \mathbb{R})$, det B = 0 and det $(2AB + B^2) \neq 0$?

Answer 4.

No, because

$$\det(2AB + B^2) = \det((2A + B)B) = \det(2A + B)\det B$$

Question 5.

Is it possible that \mathcal{A}, \mathcal{B} are two different bases of \mathbb{R}^2 and

$$M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}?$$

Answer 5.

No, if $\mathcal{A} = (v_1, v_2)$ and $\mathcal{B} = (w_1, w_2)$ then the condition

$$M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

implies $v_1 = w_1$, $v_2 = w_2$ therefore $\mathcal{A} = \mathcal{B}$.

Question 6.

Are the affine subspaces $E, \ H \subset \mathbb{R}^3$ given by

$$E = (1, 1, 2) + \operatorname{aff}((-1, 0, 1), (1, 1, 2), (3, 2, 3)),$$
$$H = (1, -1, 0) + \operatorname{lin}((2, 1, 1)),$$

parallel?

Answer 6. Yes, they are.

$$\vec{E} = \ln((1,1,2) - (-1,0,1), (3,2,3) - (-1,0,1)) =$$

$$= \lim((2,1,1), (4,2,2)) = \lim((2,1,1)) = \overline{H},$$

which, by definition (see Lecture 11) means that E and H are parallel.